

DUV-HL46N

- Deep Ultraviolet Light Emission Source
- 310, 325, 340 nm
- TO46 metal can
- Hemispherical UV lens
- Beam angle 6-12 deg.

Description

DUV-HL46N is a series of **AIGaN** based single emitter DEEP-UV LEDs in a hermetically sealed TO46 package, utilizing a hemispherical UV glass lens with a beam angle of 6-12 degree. **DUV-HL46N** is available from 310 nm up to 340 nm peak wavelength with an optical output power of typically 0.9 mW.

Maximum Rating (TCASE = 25°C)

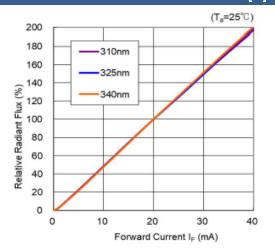
Doromotor	Symbol	Va	Unit	
Parameter		Min.	Max.	Unit
Forward Current (T _A =25°C)	<i>I</i> F		40	mA
Operating Temperature	T_{OPR}	- 20	+ 80	°C
Storage Temperature	T STG	- 40	+ 100	°C
Soldering Temp. Hand (max 5s)	TsoL		+ 350	°C
Soldering Temp. Reflow (max 3s)	Tsol		+ 250	°C

Electro-Optical Characteristics (T_{CASE} = 25°C, I_F = 20 mA)

Parameter	Symbol	DUV310-HL46N	DUV325-HL46N	DUV340-HL46N	Unit
Peak Wavelength*	λ _P	310 ±5	325 ±5	340 ±5	nm
Radiated Power**	Po	0.9	1.0	0.9	mW
Spectral Width (FWHM)	$\Delta \lambda$	15	11	9	nm
Forward Voltage	V F	5.0	4.5	4.0	V
Viewing Angle	20 _{1/2}		6-12		deg.

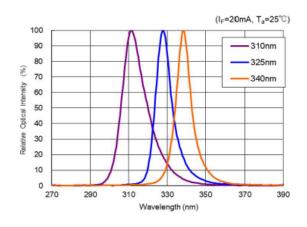
^{*}Peak Wavelength Measurement tolerance is ±3nm.

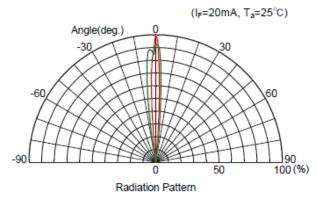
^{**}Radiant Flux Measurement tolerance is ±10%



Performance Characteristics

Forward Current vs. Forward Voltage


(T_a=25°C) 40 30 Forward Current IF (mA) 340nm 20 10 0 2 5 6 7 4 8 Forward Voltage V_F (V)

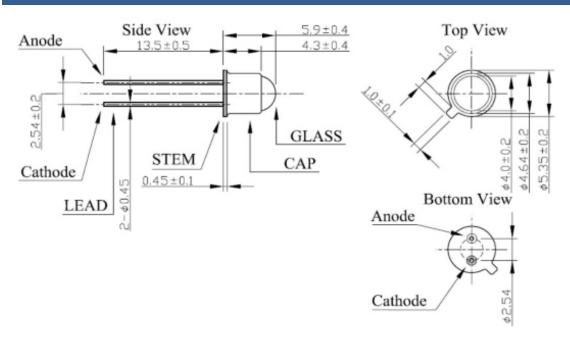

Forward Current vs. Relative Radiant Flux [%]

Spectrum

Radiation Pattern

Device Materials

Pin#	Material
Glass	UV
Сар	Fe-Ni alloy, Ni plating
Stem	SPC, Au plating
Leads	Fe-Ni alloy, Au plating



2 www.roithner-laser.com

Outline Dimensions

TO46

Dimensions are subject to change for without notice.

all dimensions in mm

Precautions

Static Electricity:

LEDs are sensitive to electrostatic discharge (ESD). Precautions against ESD must be taken when handling or operating these LEDs. Surge voltage or electrostatic discharge can result in complete failure of the device.

UV-Radiation:

During operation these LEDs do emit **high intensity ultraviolet light**, which is hazardous to skin and eyes, and may cause cancer. Do avoid exposure to the emitted UV light. **Protective glasses are recommended**. It is further advised to attach a warning label on products/systems that do utilize UV-LEDs:

Operation:

Do only operate LEDs with a current source.

Running these LEDs from a voltage source will result in complete failure of the device.

Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice

www.roithner-laser.com