

APG2C1-1030

IR High Power single chip LED

APG2C1-1030 is a GaAlAs based, high power 1030 nm single chip LED in standard emitter package for general application.

Specifications

Structure: GaAlAs

Peak Wavelength: 1030 nmOptical Output Power: typ. 60 mW

• Life Time: > 10.000 hours

· Housing: standard emitter package

Absolute Maximum Ratings (T_a=25°C)

Parameter	Symbol	Value	Unit
Power Dissipation, DC	P_{D}	1000	mW
Forward Current, DC	l _F	500	mA
Pulsed Current (1% duty cycle, 1kHz)	I _{FP}	1000	mA
Reverse Voltage	U_R	-5	V
Operating Temperature	T_{opr}	-30 +70	°C
Storage Temperature	T_{stg}	-30 +85	°C
Soldering Temperature (max. 1,5 s)	T_{sol}	330	°C

Electro-Optical Characteristics (T_a=25°C)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Current	l _F		-	350	-	mA
Viewing Angle	φ	$I_F = 350 \text{ mA}$		± 75		deg.
CW Output Power	Po	$I_F = 350 \text{ mA}$		60		mW
Peak Wavelength	λ_{P}	$I_F = 350 \text{ mA}$		1030		nm
Forward Voltage	U_F	$I_F = 350 \text{ mA}$	-	1.2	-	V
Half Width (FWHM)	Δλ	$I_F = 350 \text{ mA}$	-	40		nm

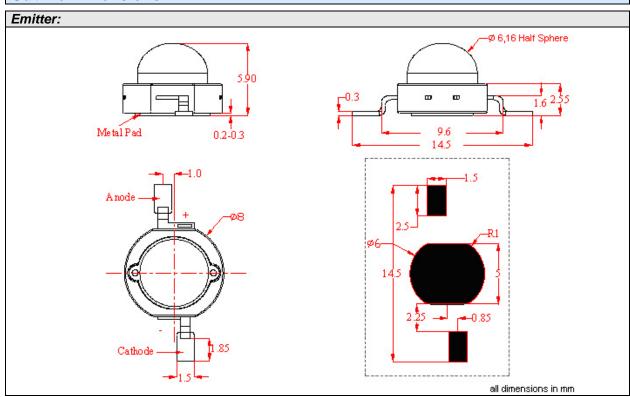
Wavelength measurements tolerance is +/- 2% Output power measurement tolerance is +/- 10% Voltage measurement tolerance is +/- 2%

Device Materials

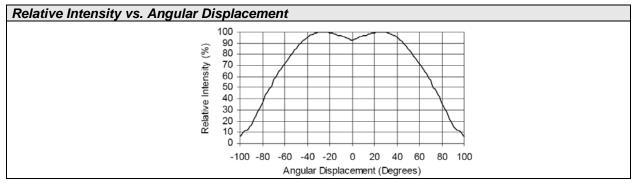
Item	Material	Lens
Foundation	Plastic	\mathcal{A}
Lens	Acryl	
Electrodes	AgCu	
Heat Sink	AgCu	——————————————————————————————————————

ROITHNER LASERTECHNIK GIRDH

1040 VIENNA TEL. +43 I 586 52 43 -0, FAX. -44, OFFICE@ROITHNER-LASER.COM



Typical Performance Characteristics


WIEDNER HAUPTSTRASSE 76

Outline Dimensions

Radiation Pattern (lambertian lens without optics)

Soldering Conditions

Reflow Soldering:

APG2C1 LEDs have a maximum storage temperature of 115°. Therefor it is not possible to use a reflow soldering process for array assembly!

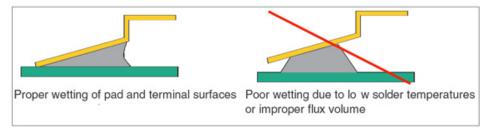
Hot Bar Soldering:

A Hot Bar Soldering process is recommended when soldering APG2C1 emitters. This process will only transfer heat to the leads and avoids overheating the emitter which will damage the device. In order to transfer sufficient heat from the hot bar to the device, following parameters must be carefully considered:

- Amount of flux
- Pressing force of solder tip
- Hot bar temperature

For the standard assembly process, following parameters should be maintained:

Hot Bar temperature: 330 °C
Force of Hot Bar. 40 N
Soldering time: 1.5 s


It is recommended to use a copper nickel-plated hot bar mounted to standard temperature controlled soldering equipment.

Manual Hand Soldering:

For prototype build or small series production runs, it is possible to place and solder the emitters by hand. It is therefore recommended to maintain the following parameters:

- Solder Tip Temperature 330 °C
- Soldering time. < 1.5 s
- Junction temperature must be kept below 115 °C

A visual inspection may be used to check the quality of the solder joint

General Soldering Precautions:

- Mechanical stress, shock and vibration must be avoided during soldering
- Only use non corrosive flux.
- Do not apply current to the device until it has cooled down to room temperature after soldering.

