

ROITHNER LASERTECHNIK GIRDH

WIEDNER HAUPTSTRASSE 76 IO40 VIENNA AUSTRIA TEL. +43 I 586 52 43 -0, FAX. -44, OFFICE@ROITHNER-LASER.COM

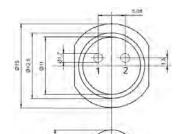
ELJ-670-629

TECHNICAL DATA

High Power LED, Jumbo Package

AIGaAs

ELJ-670-629 is high power LED in an black anodised aluminium case, with thread socket for easy handling and heat sink mounting.


It is designed for medical appliances, illumination, remote control and optical communications, light barriers, measurement systems, etc.

Specifications

• Technology: AlGaAs, 1 power LED chip

Peak Wavelength: typ. 670 nmOptical Ouput Power: typ. 30 mW

• Package: Jumbo, metal case with plastic lens

Outline:

 $H = 12.4 \text{ mm } (\pm 0.5)$ D = 16 mm (± 0.5)

Thread M10x1.5

PIN	Function				
1	LED Cathode				
2	LED Anode				

(Unit: mm)

Absolute Maximum Ratings (T_C=25°C)

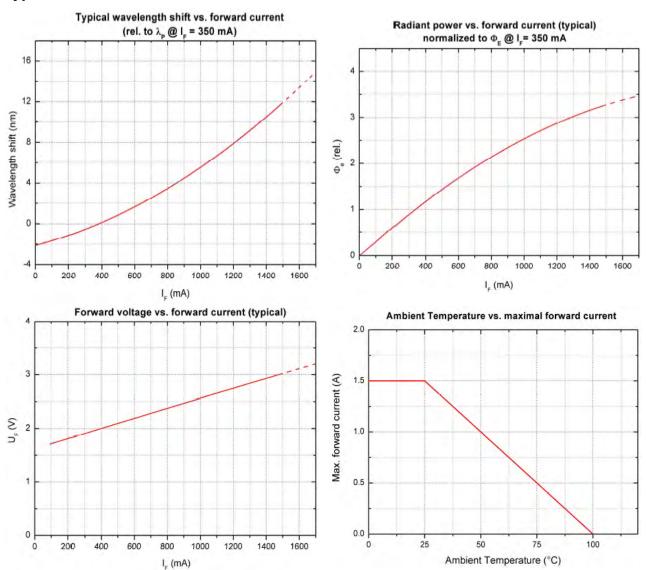
Item	Symbol	Value	Unit
Power Dissipation	P_{D}	3	W
Forward Current	I _F	1.0	Α
Pulse Forward Current *	I _{FP}	1.8	Α
Operating Temperature	T_{opr}	-25 +100	°C
Storage Temperature	T_{stq}	-25 +100	°C
Junction Temperature	T_i	100	°C

on heat sink (S \geq 200 cm²) * pulse width \leq 10 μ s, f \leq 500 Hz

Specifications ($T_C=20$ °C)

Item	Test Condition	Symbol	Min.	Тур.	Max.	Unit		
Optical Specifications								
Radiant Power	I _F = 350 mA	Фе	20	30	-	mW		
Radiant Power *	I _F = 1000 mA	Фе	55	80	-	mW		
Radiant Intensity	I _F = 350 mA	l _e	220	320	-	mW/sr		
Radiant Intensity *	I _F = 1000 mA	l _e	-	800	-	mW/sr		
Peak Wavelength	I _F = 350 mA	λ_{p}	660	670	680	nm		
Spectral Bandwidth at 50%	I _F = 350 mA	$\Delta\lambda_{0.5}$	-	24	-	nm		
Viewing Angle	I _F = 350 mA	φ	-	15	-	deg		
Electrical Specifications								
Forward Voltage	I _F = 350 mA	U _F	-	2.0	2.5	V		
Forward Voltage *	I _F = 1000 mA	U_F	-	2.5	3.0	V		
Switching Time	I _F = 350 mA	t _r , t _f	-	55	-	ns		
Reverse Voltage	I _R = 10 μA	U_R	5	-	-			
Thermal Resistance Junction-Case		R_{thJC}	-	10	-	K/W		

^{*} only recommended on optimal heat sink


ROITHNER LASERTECHNIK GIRDH

WIEDNER HAUPTSTRASSE 76

Typical Performance Curves

Remarks concerning optical radiation safety*

At low forward current (<150 mA), and continuous operation, this LED may be classified as LED product *Class 2*, according to standard IEC 60825-1:A2. *Class 2* products emit in the visible region, damaging exposure is usually prevented through avert reactions including blink reflex. It can be expected that these reactions provide sufficient protection under reasonably predictable conditions. This also implicates a direct observation of the light beam by means of optical instruments.

If intended to operate at higher current, this product should be classified as LED product *Class 2M*, according to standard IEC 60825-1:A2. *Class 2M* products are safe to eyes and skin under normal conditions, including when users view the light beam directly. These products emit in the visible region and it is presumed that the human blink reflex will be sufficient to prevent damaging exposure, but if the beam is focused down, damaging levels of radiation may be reached. Therefore, users should not incorporate optics that could concentrate the output into the eyes.

*Note: Safety classification of an optical component mainly depends on the intended application and the way the component is being used. Furthermore, all statements made to classification are based on calculations and are only valid for this LED "as it is", and at continuous operation. Using pulsed current or altering the light beam with additional optics may lead to different safety classifications. Therefore these remarks should be taken as recommendation and guideline only.

Notes

- The mentioned specifications are for reference purpose only and subjected to change without prior notice.
- All measurements carried out on blank aluminium heat sink, S = 180 cm², passive cooling. Measurement results and curve characteristics obtained with other heat sinks may differ.
- Do not view directly into the emitting area of the LED during operation!
- This high power LED must be cooled!

Handling precautions

To prevent damage to the LED during soldering and assembly, following precautions have to be taken into account.

a) The bending point of the lead frame should b) While bending, the base of the lead frame has be located at least 2.5 mm away from the to be fixed with radio pliers or similar. body.

soldering.

c) To ensure an adequate strain relief, the d) Avoid any torsion or tensile loading of the lead lead frames have to be firmly fixed during frames, especially when they have been heated after being soldered.

e) LEDs are static sensitive devices, so adequate handling precautions have to be taken, e.g. wearing grounding wrist straps.

