05 / 2019

VL400-EMITTER-R2

UV High Power LED

• 400 nm, 300-400 mW

• Emitter Package

Viewing Angle: 140°

Description

VL400-EMITTER-R2 is a InGaN based, High Power UV single chip LED with a typical peak wavelength of **400 nm** and radiation of **300-400 mW**. It comes in standard emitter package with Au soldering pins, Au plating copper heat sink, and silicone resin lens. **VL400-EMITTER-R2** is designed for lead free reflow soldering process,

Maximum Ratings (TCASE=25°C)

Dovemeter	Symbol	Val	Heit	
Parameter		Min.	Max.	Unit
Power Dissipation	P_D		1300	mW
Forward Current	IF		350	mA
Pulse Forward Current *1	I FP		500	mA
Reverse Voltage	V _F	Not designed to be of	V	
Junction Temperature	T_J		120	°C
Operating Temperature	TCASE	- 30	+ 100	°C
Storage Temperature	T_{STG}	- 40	+ 120	°C
Lead Solder Temperature *2	T _{SLD}		+ 260	°C
ESD Sensitivity (Human Body Model)		8000		V

^{*1} duty=1%, pulse width = 10 μ s


Electro-Optical Characteristics (TCASE=25°C)

Parameter	Symbol	Conditions	Min.	Values Typ.	Max.	Unit
Peak Wavelength *1	λ_P	I _F =350mA	395		405	nm
Forward Voltage *2	VF	I _F =350mA	3.0		4.0	V
Radiated Power *3	Po	I _F =350mA	300		400	mW
Viewing Angle	φ	I _F =100mA		140		deg.

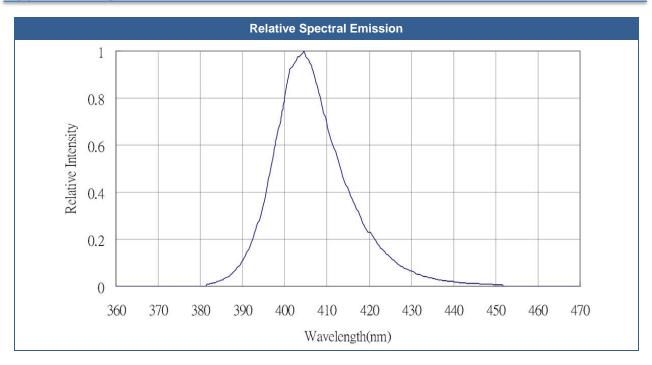
^{*1} measurement allowance: ±1 nm

Device Materials

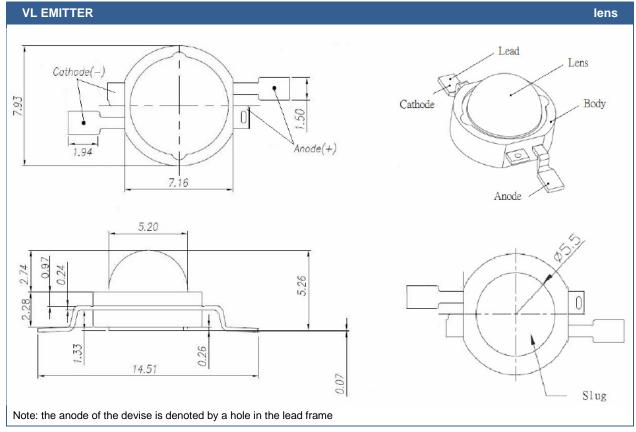
Item	Material
Foundation	Plastic
Lens	Silicone Resin
Electrodes	Au
Lead Frame *	Au Plating Copper Alloy

1

www.roithner-laser.com


^{*2} must be completed within 5 seconds

^{*2} measurement allowance: ±10%


^{*3} measurement allowance: ±0.1 V

^{*} may be connected to Anode or Cathode

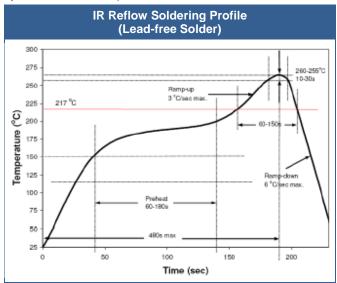
Typical Performance Curves

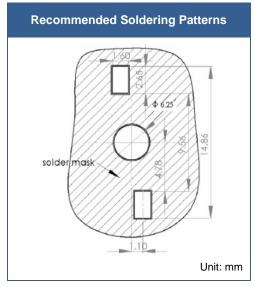
Outline Dimensions

All Dimensions in mm; Tolerance: ±0.2 mm

www.roithner-laser.com

Precautions


Soldering:


- · Do avoid overheating of the LED
- Do avoid electrostatic discharge (ESD)
- Do avoid mechanical stress, shock, and vibration
- · Do only use non-corrosive flux
- Do not apply current to the LED until it has cooled down to room temperature after soldering

Recommended soldering conditions:

This LED is designed to be reflow soldered on to a PCB. If dip soldered or hand soldered, its reliability cannot be guarantee.

Nitrogen reflow soldering is recommended. Air flow soldering conditions can cause optical degradation, caused by heat and/or atmosphere.

Above table specifies the maximum allowed duration and temperature during soldering. It is strongly advised to perform soldering at the shortest time and lowest temperature possible.

Cleaning:

Cleaning with isopropyl alcohol, propanol, or ethyl alcohol is recommended

DO NOT USE acetone, chloroseen, trichloroethylene, or MKS

DO NOT USE ultrasonic cleaners

Static Electricity:

LEDs are sensitive to electrostatic discharge (ESD). Precautions against ESD must be taken when handling or operating these LEDs. Surge voltage or electrostatic discharge can result in complete failure of the device.

Radiation:

During operation these LEDs do emit **high intensity UV light**, which is hazardous to skin and eyes, and may cause cancer. Do avoid exposure to the emitted light. **Protective glasses are recommended**. It is further advised to attach a warning label on products/systems.

Operation:

Do only operate LEDs with a current source.

Running these LEDs from a voltage source will result in complete failure of the device.

Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory.

The above specifications are for reference purpose only and subjected to change without prior notice

www.roithner-laser.com

[©] All Rights Reserved