TECHNICAL DATA

High Power LED, SMD

SMB3W-420/525/640-I are multi chip High Power LEDs, isolated mounted on a cooper heat sink with a 5x5 mm SMD package and molded with silicone resin. On forward bias, it emits a radiation at a peak wavelength of 420nm, 525nm and 640 nm.

Specifications

- **Structure**: InGaN and GaInAsP, 3x1W high power chip
- **Peak Wavelengths**: 420 nm, 525 nm, 640 nm
- **Optical Output Power**: 115 mW, 60 mW, 110 mW
- **Package**
 - SMD, PPA resin
 - Isolator: AlN ceramics
 - Lead frame die: silver plated on copper
 - Lens: silicone resin

Absolute Maximum Ratings (Ta=25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>420 nm</th>
<th>525 nm</th>
<th>640 nm</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation</td>
<td>P_D</td>
<td>1200 mW</td>
<td>1200 mW</td>
<td>1800 mW</td>
<td>mW</td>
</tr>
<tr>
<td>Forward Current</td>
<td>I_F</td>
<td>300 mA</td>
<td>300 mA</td>
<td>600 mA</td>
<td>mA</td>
</tr>
<tr>
<td>Pulse Forward Current</td>
<td>I_FP</td>
<td>1000 mA</td>
<td>1000 mA</td>
<td>2000 mA</td>
<td>mA</td>
</tr>
<tr>
<td>Reverse Voltage</td>
<td>V_R</td>
<td>5 V</td>
<td>9 K/W</td>
<td>6 K/W</td>
<td>K/W</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>R_th</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>K/W</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_J</td>
<td>100 °C</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_opr</td>
<td>-30 ... +85 °C</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_stg</td>
<td>-30 ... +100 °C</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Soldering Temperature</td>
<td>T_sol</td>
<td>255 °C</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

*1 duty = 1%, pulse width = 10 µs
*2 must be completed within 5 seconds

Electro-Optical Characteristics

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>420</th>
<th>525</th>
<th>640</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Voltage</td>
<td>V_F</td>
<td>I_F = 300 mA</td>
<td>3.5</td>
<td>3.3</td>
<td>2.6</td>
<td>V</td>
</tr>
<tr>
<td>Total Radiated Power</td>
<td>P_o</td>
<td>I_F = 300 mA</td>
<td>115</td>
<td>60</td>
<td>110</td>
<td>mW</td>
</tr>
<tr>
<td>Radiant Intensity</td>
<td>I_E</td>
<td>I_F = 300 mA</td>
<td>30</td>
<td>20</td>
<td>35</td>
<td>mW/sr</td>
</tr>
<tr>
<td>Half Width</td>
<td>Δλ</td>
<td>I_F = 50 mA</td>
<td>12</td>
<td>20</td>
<td>13</td>
<td>nm</td>
</tr>
<tr>
<td>Viewing Half Angle</td>
<td>Θ_{1/2}</td>
<td>I_F = 50 mA</td>
<td>±62</td>
<td></td>
<td></td>
<td>deg.</td>
</tr>
</tbody>
</table>

Total Radiated Power is measured by S3584-08
Radiant Intensity is measured by Tektronix J-6512

Notes

- Do not view directly into the emitting area of the LED during operation!
- The above specifications are for reference purpose only and subjected to change without prior notice.
Package Dimensions

Unit:mm

[Diagram showing package dimensions with labels for anode, cathode, heatsink, and land pattern for solder.]
Typical Performance Curves, 420 nm

Forward Current – Forward Voltage

Relative Radiant Intensity – Pulsed Forward Current

Peak Wavelength

Ta = 25°C
Typical Performance Curves, 525 nm

- **Forward Current – Forward Voltage**
 - Ta = 25°C, tw = 10μs, Duty = 1%

- **Relative Radiant Intensity – PulsedForward Current**
 - (Ta = 25°C, tw = 10μs, Duty = 1%) 100mA standard

- **Peak Wavelength**
 - Ta = 25°C

11.08.2011

SMB3W-420/525/640-I
Typical Performance Curves, 640 nm

- **Forward Current – Forward Voltage**

 $Ta = 25^\circ C$, $tw = 10\text{us}$, Duty $= 1\%$

- **Relative Radiant Intensity – Pulsed Forward Current**

 $(Ta = 25^\circ C$, $tw = 10\text{us}$, Duty $= 1\%)$

 100mA standard

- **Peak Wavelength**

 $Ta = 25^\circ C$
1. **Soldering Conditions**
 - DO NOT apply any stress to the lead particularly when heat.
 - After soldering the LEDs should be protected from mechanical shock or vibration until the LEDs return to room temperature.
 - When it is necessary to clamp the LEDs to prevent soldering failure, it is important to minimize the mechanical stress on the LEDs.

2. **Static Electricity**
 - The LEDs are very sensitive to Static Electricity and surge voltage. So it is recommended that a wrist band or an anti-electrostatic glove be used when handling the LEDs.
 - All devices, equipment and machinery must be grounded properly. It is recommended that precautions should be taken against surge voltage to the equipment that mounts the LEDs.

ATTENTION

OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC SENSITIVE DEVICES