

LED565/660-04A

TECHNICAL DATA

Dual LED, 5 mm package

GaP, DDH AIGaAs

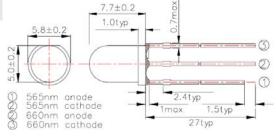
LED565/660-04A is a bi-color LED, containing a GaP (565 nm) and DDH AlGaAs (660 nm) LED chip die, which are mounted on a lead frame with a clear epoxy lens.

On forward bias, it emits a power radiation of typical 0.2 mW and 4.0 mW at peak wavelengths of nm and 660 nm.

Specifications

Structure:

Peak Wavelength:


Optical Output Power:

Package:

Resin Material:

Lead Frame:

GaP and DDH AlGaAs 565 and 660 nm 0.2 and 4.0 mW Ø 5 mm clear molding clear epoxy resin soldered

(Unit: mm)

Absolute Maximum Ratings (T_A =25°C)

Item	Symbol	Va	Unit	
		565 nm	660 nm	
Power Dissipation	P _D	80	75	mW
Forward Current	I _F	3	mA	
Reverse Voltage	V_R		V	
Operating Temperature	T _{opr}	-30 .	°C	
Storage Temperature	T _{stg}	-30	°C	
Soldering Temperature *	T _{sol}	2	°C	

^{*} must be completed within 3 seconds at 260°C

Electro-Optical Characteristics

Item	Symbol	Condition	Min.		Тур.		Max.		Unit
			565nm	660nm	565nm	660nm	565nm	660nm	Offic
Peak Wavelength	λ_{P}	$I_F = 20 \text{ mA}$	562	645	565	655	-	665	nm
Half Width	Δλ	$I_F = 20 \text{ mA}$		-	50	20		-	nm
Total Radiated Power *	Po	$I_F = 20 \text{ mA}$	0.1	2.5	0.2	4.0	0.3	6.5	mW
Forward Voltage	V_{F}	$I_F = 20 \text{ mA}$	-	-	2.2	1.9	2.4	2.3	V
Reverse Current	I _R	$V_R = 5 V$	-		-		-	10	μΑ
Viewing Half Angle	Θ _{1/2}	$I_F = 20 \text{ mA}$	-		±20		-		deg.

^{*1} measured by Photodyne #500

Note: The above specifications are for reference purpose only and subjected to change without prior notice.

ROITHNER LASERTECHNIK GIRDH

WIEDNER HAUPTSTRASSE 76 IO40 VIENNA AUSTRIA TEL. +43 I 586 52 43 -0, FAX. -44, OFFICE@ROITHNER-LASER.COM

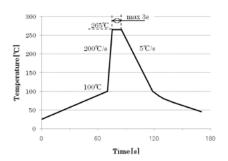
Precaution for Use

1. Cautions

• DO NOT look directly into the emitting area of the LED or through the optical system during operation! To prevent in adequate exposure of the radiation, wear protective glasses.

2. Lead Forming

- Lead forming should be done before soldering.
- When forming leads, the leads should be bent at a point at least 3 mm from the base of the lead. DO NOT use the base of the lead frame as a fulcrum during lead forming!
- DO NOT apply any bending stress to the base of the lead. The stress to the base may damage the LED's characteristics or it may break the LEDs.
- When mounted the LEDs onto the printed circuit board, the holes on the circuit board should be exactly aligned with the leads of LEDs. If the LEDs are mounted with stress at the leads, it causes deterioration of the lead and it will degrade the LEDs.


3. Soldering Conditions

- Solder the LEDs no closer than 3 mm from the base of the lead.
- DO NOT apply any stress to the lead particularly when heat.
- After soldering the LEDs, the lead should be protected from mechanical shock or vibration until the LEDs return to room temperature.
- The LEDs must not be reposition after soldering.
- When it is necessary to clamp the LEDs to prevent soldering failure, it is important to minimize the mechanical stress on the LEDs.
- Cut the LED leads at room temperature. Cutting the leads at high temperature may cause the failure of the LEDs.

4. Static Electricity

- The LEDs are very sensitive to Static Electricity and surge voltage. So it is recommended that a wrist band and/or an antielectrostatic glove be used when handling the LEDs.
- All devices, equipment and machinery must be grounded properly. It is recommended that precautions should be taken against surge voltage to the equipment that mounts the LEDs.

Soldering Conditions

