

SMC430

- SMD LED
- 430 nm, 18 mW
- Chip: InGaN, 350 x 350 µm, 1 pc.
- SMD package, Ceramic, 3.0 x 2.0 x 1.1 mm
- Viewing Angle: 112°

Description

Rev. A2

SMC430 is a surface mount InGaN LED with a typical peak wavelength of **430 nm** and radiation of 18 mW. It comes in SMD package (ceramic) and is sealed with silicone or epoxy resin.

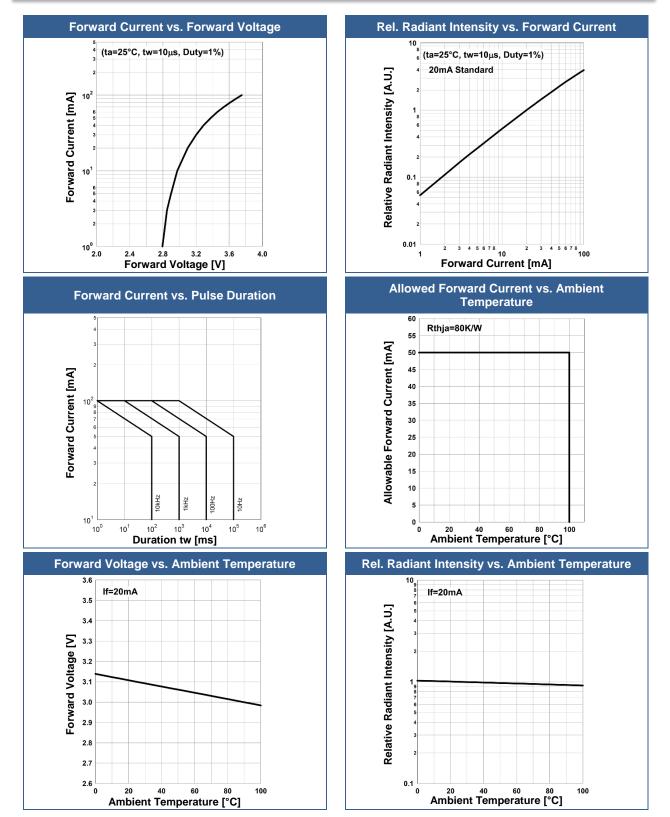
Maximum Ratings (T_{CASE}=25°C)

Parameter	Cumple of	Va	l lm it	
Parameter	Symbol	Min.	Max.	Unit
Power Dissipation	PD		200	mW
Forward Current	IF		50	mA
Pulse Forward Current *1	IFP		100	mA
Reverse Voltage	VF		5	V
Thermal Resistance	R _{THJA}		80	K/W
Junction Temperature	T_J		120	°C
Operating Temperature	T _{CASE}	- 40	+ 100	°C
Storage Temperature	T _{STG}	- 40	+ 100	°C
Lead Solder Temperature *2	T _{SLD}		+ 250	°C

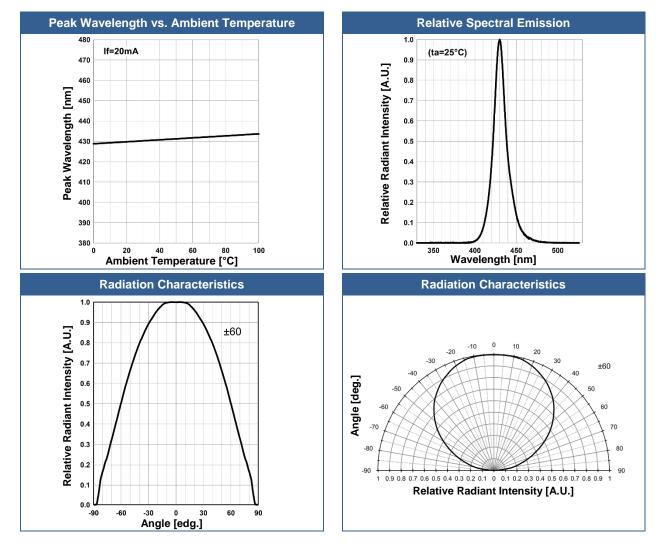
*1 duty=1%, pulse width = 10 μ s

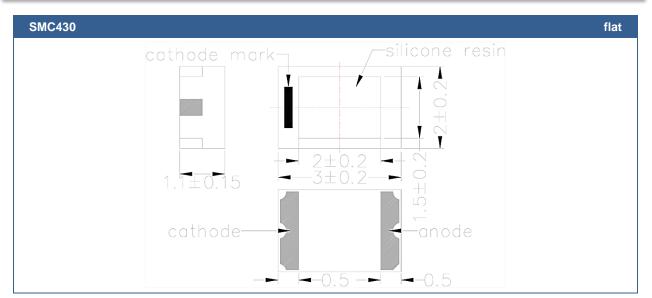
*2 must be completed within 3 seconds

Electro-Optical Characteristics (T_{CASE}=25°C)


Parameter	Symbol	Conditions	Min.	Values Typ.	Max.	Unit
Peak Wavelength	λ _P	I _F =20mA	420		440	nm
Dominant Wavelength	λD	I _F =20mA		437		nm
Half Width	$\Delta \lambda$	I⊧=20mA		16		nm
	14-	I⊧=20mA		3.1	4.0	V
Forward Voltage	VF	IFP=100mA		3.8		V
Radiated Power *	Π.	I⊧=20mA		18		mW
Radiated Power	Po	IFP=100mA		70		
Padiant Intensity	IE	IF=20mA		5.3		mW/sr
Radiant Intensity		IFP=100mA		20		
Luminous Flux	ΦV	I⊧=20mA		250		mlm
Viewing Angle	φ	IF=20mA		120		deg.
Rise Time	tr	I _F =20mA		20		ns
Fall Time	t _f	I _F =20mA		20		ns

*1 measured by S3584-08

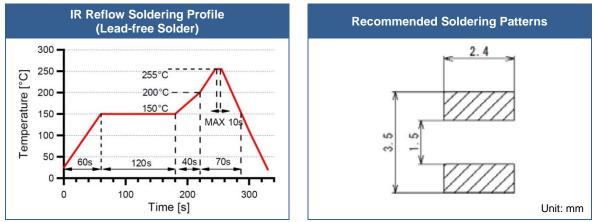

*2 measured by CIE127-2007 Condition B


Typical Performance Curves

Outline Dimensions

All Dimensions in mm

Precautions


Soldering:

- Do avoid overheating of the LED
- Do avoid electrostatic discharge (ESD)
- Do avoid mechanical stress, shock, and vibration
- Do only use non-corrosive flux
- Do not apply current to the LED until it has cooled down to room temperature after soldering

Recommended soldering conditions:

This LED is designed to be reflow soldered on to a PCB. If dip soldered or hand soldered, its reliability cannot be guarantee.

Nitrogen reflow soldering is recommended. Air flow soldering conditions can cause optical degradation, caused by heat and/or atmosphere.

Above table specifies the maximum allowed duration and temperature during soldering. It is strongly advised to perform soldering at the shortest time and lowest temperature possible.

Cleaning:

Cleaning with isopropyl alcohol, propanol, or ethyl alcohol is recommended DO NOT USE acetone, chloroseen, trichloroethylene, or MKS DO NOT USE ultrasonic cleaners

Static Electricity:

LEDs are sensitive to electrostatic discharge (ESD). Precautions against ESD must be taken when handling or operating these LEDs. Surge voltage or electrostatic discharge can result in complete failure of the device.

Radiation:

Those LEDs do emit **invisible light**, which is invisible and may cause cancer. Do avoid exposure to the emitted light. It is further advised to attach a warning label on products/systems.

Operation:

Do only operate LEDs with a current source.

Running these LEDs from a voltage source will result in complete failure of the device. Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory.

Revisions History

Rel.	Rel. Date	Chapter	Modification	Page
A2	2022-07-06	-	Initial release	-

 $\ensuremath{\mathbb{C}}$ All Rights Reserved The above specifications are for reference purpose only and subjected to change without prior notice